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Key concepts:

• Martingale;

• Stopping time.

3.1 Definition of martingale

Example 3.1 (Fair Gambling) In a simple gambling, one decides the amount of the next game based on
the results of the previous games. Let ξ0 be the capital at the beginning of the game, and denote ξn as all the
principal after the nth game.

Let

ηn =

{
1 win n-th game;
−1 lose n-th game.

be i.i.d. sequence of random variables satisfies P(ηn = 1) = p, P(ηn = −1) = 1− p = q, and borel function
fn(ξ0, η1, η2, · · · , ηn−1) be strategy for the n-th game. Then, the principal after the n-th game is

ξn = ξn−1 + fn(ξ0, η1, η2, · · · , ηn−1) · ηn = ξ0 +

n∑
k=1

fk(ξ0, η1, η2, · · · , ηk−1) · ηk.

Consider

E[ξn+1|ξ0, η1, · · · , ηn] = ξn + fn+1(ξ0, η1, · · · , ηn)E(ηn+1).

is the expectation/prediction of principal after the (n+ 1)-th game when one knows results of the previous n
games. We want the game to be fair, that means, at any time n, predicting the “win/lose situation” at time
n+1, regardless of the game strategy, is impossible to obtain any information about the “win/lose situation”.
That is

E[ξn+1|ξ0, η1, · · · , ηn] = ξn.

When p = q = 1
2 , we realize ”fair gambling”.

This leads to the following definition

Definition 3.2 (Martingale) Let (Ω,F , (Fn),P), n = 0, 1, . . . be a filtered probability space, X = (Xn)
be a adapted process on (Ω,F , (Fn),P) satisfying E[|Xn|] < ∞ is called

(1) a Fn-martingale if E[Xn+1|Fn] = Xn;

(2) a Fn-supermartingale if E[Xn+1|Fn] ≤ Xn;

(3) a Fn-submartingale if E[Xn+1|Fn] ≥ Xn.
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3.2 Examples

Example 3.3 (Doob martingale) Let (Ω,F , (Fn),P), n = 0, 1, . . . be a filtered probability space, ξ be a
random variable satisfies E|ξ|< ∞. Define ξn = E[ξ|Fn], then ξn is a martingale.

Example 3.4 (Martingale transform) For (Ω,F , (Fn),P), n = 0, 1, . . ., let (Cn), n = 0, 1, . . . be a
sequence of random variables. We say (Cn) is predictable, if Cn is Fn−1-measurable for all n ≥ 1.

Let (Xn) be a Fn-martingale, (Cn) be a Fn-predictable process. Define martingale transform of (Xn) respect
to (Cn):

Yn :=

n∑
k=1

Ck(Xk −Xk−1), k ≥ 1, Y0 = 0. (3.1)

Then Yn is a Fn-martingale.

In practice, we consider a risk investment in the market with price (Xn) and a fixed income with interest rate
r. Someone have initial fortune Y0. An investment strategy is deciding at n− 1 to hold Cn risk investment
at n, and with the remaining funds purchasing fixed income. The fortune at n− 1 is

Yn−1 = CnXn−1 + (Yn−1 − CnXn−1).

Then at n
Yn = CnXn + (1 + r)(Yn−1 − CnXn−1)

⇐⇒ Yn − (1 + r)Yn−1 = Cn(Xn − (1 + r)Xn−1)

⇐⇒ (1 + r)−nYn − (1 + r)−(n−1)Yn−1 = Cn[(1 + r)−nXn − (1 + r)−(n−1)Xn−1].

Discount fortune (1 + r)−nYn is martingale transform of discount price (1 + r)−nXn respect to Cn.

Example 3.5 (Martingale betting strategy) Considering gambling model in example 3.1, we change
the strategy to that each bet is doubled accordingly from the previous bet before the first win. This strategy is
called martingale betting strategy. Specifically,

f1(ξ0) = 1,

f2(ξ0,−1) = 2, f2(ξ0, 1) = 0,

f3(ξ0,−1,−1) = 4, f3(ξ0,−1, 1) = 0, f3(ξ0, 1,−1) = 0, f3(ξ0, 1, 1) = 0, . . .

fn(ξ0,−1, · · · ,−1︸ ︷︷ ︸
n−1

) = 2(n−1), fn(ξ0, others) = 0.

Since p = q = 1
2 , (ξn) is a martingale. Let

An := {η1 = −1, · · · , ηn−1 = −1, ηn = 1}

denote the event that the gambler wins for the first time at n. Then

An = {ξ0 = 0, ξ1 = −1, · · · , ξn−1 = −
n−1∑
k=1

2k−1, ξn = ξn−1 + 2n−1, ξn+k = ξn, k ≥ 1}.

Event
⋃∞

n=1 An denote gambler wins and stops gambling sooner or later.

P(

∞⋃
n=1

An) =

∞∑
n=1

P(An) =

∞∑
n=1

1

2n
= 1.

This shows that even in the case of a fair gambling, there is ”martingale betting strategy” that guarantees
the gambler will not lose in the end. Does this contradict the fact that gambling with martingale property is
”fair”?
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3.3 Stopping time

In life we care about special moments like births, graduations, and marriages. But for different people, the
moment of the same event may be different. This motivates us to consider not only deterministic time such
as 0, 1, 2, etc., but also random time. In stochastic processes, we introduce the concept of stopping time
which is a special class of random time.

Definition 3.6 (Stopping time) Let τ be a random variable, which is defined on the filtered probability
space (Ω,F , (Fn),P) with values in N ∪ {+∞} . Then τ is called a stopping time (with respect to the
filtration (Fn)), if the following condition holds:

{ω ∈ Ω : τ(ω) ≤ n} ∈ Fn for all n.

Constant n is constant stopping time. Stopped process Xτ is defined as

Xτ
n(ω) := Xτ(ω)∧n(ω)

Intuitively, this condition means that the ”decision” of whether to stop at time n must be based only on the
information present at time n, not on any future information.

Proposition 3.7 Let τ and σ be two (Fn) stopping times, then

(1) τ ∧ σ := min(τ, σ) is a (Fn) stopping time;

(2) τ ∨ σ := max(τ, σ) is a (Fn) stopping time.

For filtration (Fn), event field Fn is the information before time n. For a stopping time τ , we want to know
what is the ”information” that can be held before τ . We introduce the following definition:

Definition 3.8 (Event field of τ-past) Let τ be a stopping time on the filtered probability space (Ω,F , (Fn),P).
Then

Fτ := {A ∈ F | ∀n, {ω ∈ Ω : τ(ω) ≤ n} ∩A ∈ Fn} (3.2)

is called the event field of τ-past.

Proposition 3.9 Let τ and σ be two (Fn) stopping times, then

(1) τ is Fτ measurable;

(2) If τ ≤ σ, then Fτ ⊂ Fσ.


